234 research outputs found

    Drug delivery and controlled release from biocompatible metal-organic frameworks using mechanical amorphization

    Get PDF
    We have used a family of Zr-based metal-organic frameworks (MOFs) with different functionalized (bromo, nitro and amino) and extended linkers for drug delivery. We loaded the materials with the fluorescent model molecule calcein and the anticancer drug Ī±-cyano-4-hydroxycinnamic acid (Ī±-CHC), and consequently performed a mechanical amorphization process to attempt to control the delivery of guest molecules. Our analysis revealed that the loading values of both molecules were higher for the MOFs containing unfunctionalized linkers. Confocal microscopy showed that all the materials were able to penetrate into cells, and the therapeutic effect of Ī±-CHC on HeLa cells was enhanced when loaded (20 wt%) into the MOF with the longest linker. On one hand, calcein release required up to 3 days from the crystalline form for all the materials. On the other hand, the amorphous counterparts containing the bromo and nitro functional groups released only a fraction of the total loaded amount, and in the case of the amino-MOF a slow and progressive release was successfully achieved for 15 days. In the case of the materials loaded with Ī±-CHC, no difference was observed between the crystalline and amorphous form of the materials. These results highlight the necessity of a balance between the pore size of the materials and the size of the guest molecules to accomplish a successful and efficient sustained release using this mechanical ball-milling process. Additionally, the endocytic pathway used by cells to internalize these MOFs may lead to diverse final cellular locations and consequently, different therapeutic effects. Understanding these cellular mechanisms will drive the design of more effective MOFs for drug delivery applications.C.A.O. thanks Becas Chile and the Cambridge Trust for funding. D.F.J. thanks the Royal Society (UK) for funding through a University Research Fellowship. RSF thanks the Royal Society for receipt of a University Research Fellowship and the EPSRC (EP/L004461/1) and The University of Glasgow for funding. A.K.C is grateful to the European Research Council for an Advanced Investigator Award

    Prevalence of low-grade inflammation in depression: a systematic review and meta-analysis of CRP levels

    Get PDF
    BACKGROUND: Peripheral low-grade inflammation in depression is increasingly seen as a therapeutic target. We aimed to establish the prevalence of low-grade inflammation in depression, using different C-reactive protein (CRP) levels, through a systematic literature review and meta-analysis. // METHODS: We searched the PubMed database from its inception to July 2018, and selected studies that assessed depression using a validated tool/scale, and allowed the calculation of the proportion of patients with low-grade inflammation (CRP >3 mg/L) or elevated CRP (>1 mg/L). // RESULTS: After quality assessment, 37 studies comprising 13 541 depressed patients and 155 728 controls were included. Based on the meta-analysis of 30 studies, the prevalence of low-grade inflammation (CRP >3 mg/L) in depression was 27% (95% CI 21-34%); this prevalence was not associated with sample source (inpatient, outpatient or population-based), antidepressant treatment, participant age, BMI or ethnicity. Based on the meta-analysis of 17 studies of depression and matched healthy controls, the odds ratio for low-grade inflammation in depression was 1.46 (95% CI 1.22-1.75). The prevalence of elevated CRP (>1 mg/L) in depression was 58% (95% CI 47-69%), and the meta-analytic odds ratio for elevated CRP in depression compared with controls was 1.47 (95% CI 1.18-1.82). // CONCLUSIONS: About a quarter of patients with depression show evidence of low-grade inflammation, and over half of patients show mildly elevated CRP levels. There are significant differences in the prevalence of low-grade inflammation between patients and matched healthy controls. These findings suggest that inflammation could be relevant to a large number of patients with depression

    Self-authorship and creative industries workersā€™ career decision-making

    Get PDF
    Career decision-making is arguably at its most complex within professions where work is precarious and career calling is strong. This article reports from a study that examined the career decision-making of creative industries workers, for whom career decisions can impact psychological well-being and identity just as much as they impact individualsā€™ work and career. The respondents were 693 creative industries workers who used a largely open-ended survey to create in-depth reflections on formative moments and career decision-making. Analysis involved the theoretical model of self-authorship, which provides a way of understanding how people employ their sense of self to make meaning of their experiences. The self-authorship process emerged as a complex, non-linear and consistent feature of career decision-making. Theoretical contributions include a non-linear view of self-authorship that exposes the authorship of visible and covert multiple selves prompted by both proactive and reactive identity work

    Kinase inhibitors for the treatment of inflammatory and autoimmune disorders

    Get PDF
    Drugs targeting inhibition of kinases for the treatment of inflammation and autoimmune disorders have become a major focus in the pharmaceutical and biotech industry. Multiple kinases from different pathways have been the targets of interest in this endeavor. This review describes some of the recent developments in the search for inhibitors of IKK2, Syk, Lck, and JAK3 kinases. It is anticipated that some of these compounds or newer inhibitors of these kinases will be approved for the treatment of rheumatoid arthritis, psoriasis, organ transplantation, and other autoimmune diseases

    The RUDY study platform ā€“ a novel approach to patient driven research in rare musculoskeletal diseases

    Get PDF
    Background: Research into rare diseases is becoming more common, with recognition of the significant diagnostic and therapeutic care gaps. Registries are considered a key research methodology to address rare diseases. This report describes the structure of the Rare UK Diseases Study (RUDY) platform that aims to improve research processes and address many of the challenges of carrying out rare musculoskeletal disease research. RUDY is an internet-based platform with online registration, initial verbal consent, online capture of patient reported outcome measures and events within a dynamic consent framework. The database structure, security and governance framework are described. Results: There have been 380 participants recruited into RUDY with completed questionnaire rates in excess of 50 %. There has been one withdrawal and two participants have amended their consent options. Conclusions: The strengths of RUDY include low burden for the clinical team, low research administration costs with high participant recruitment and ease of data collection and access. This platform has the potential to be used as the model for other rare diseases globally

    Features of adenosine metabolism of mouse heart

    Get PDF
    Adenosine metabolism and transport were evaluated in the isolated perfused mouse heart and compared with the well-established model of isolated perfused guinea pig heart. Coronary venous release of adenosine under well-oxygenated conditions in the mouse exceeds that in the guinea pig threefold when related to tissue mass. Total myocardial adenosine production rate under this condition was approximately 2 nmol/min per gramme and similar in both species. Coronary resistance vessels of mice are highly sensitive to exogenous adenosine, and the threshold for adenosine-induced vasodilation is approximately 30 nmol/l. Adenosine membrane transport was largely insensitive to nitrobenzyl-thioinosine (NBTI) in mouse heart, which is in contrast to guinea pig and several other species. This indicates the dominance of NBTI-insensitive transporters in mouse heart. For future studies, the assessment of cytosolic and extracellular adenosine metabolism and its relationship with coronary flow will require the use of more effective membrane transport blockers

    Release of oxidizing fluids in subduction zones recorded by iron isotope zonation in garnet

    Get PDF
    Subduction zones are key regions of chemical and mass transfer between the Earthā€™s surface and mantle. During subduction, oxidized material is carried into the mantle and large amounts of water are released due to the breakdown of hydrous minerals such as lawsonite. Dehydration accompanied by the release of oxidizing species may play a key role in controlling redox changes in the subducting slab and overlying mantle wedge. Here we present measurements of oxygen fugacity, using garnetā€“epidote oxybarometry, together with analyses of the stable iron isotope composition of zoned garnets from Sifnos, Greece. We find that the garnet interiors grew under relatively oxidized conditions whereas garnet rims record more reduced conditions. Garnet Ī“56Fe increases from core to rim as the system becomes more reduced. Thermodynamic analysis shows that this change from relatively oxidized to more reduced conditions occurred during lawsonite dehydration. We conclude that the garnets maintain a record of progressive dehydration and that the residual mineral assemblages within the slab became more reduced during progressive subduction-zone dehydration. This is consistent with the hypothesis that lawsonite dehydration accompanied by the release of oxidizing species, such as sulfate, plays an important and measurable role in the global redox budget and contributes to sub-arc mantle oxidation in subduction zones
    • ā€¦
    corecore